Учебник по промышленной статистике


Основные статистики и таблицы - часть 22


Если условия применимости t-критерия не выполнены, следует использовать непараметрические альтернативы t-критерия (см. Непараметрическая статистика и подгонка распределения).
Цель, предположения. t-критерий является наиболее часто используемым методом обнаружения различия между средними двух выборок. Например, t-критерий можно использовать для сравнения средних показателей группы пациентов, принимавших определенное лекарство, с контрольной группой, где принималось безвредное лекарство. Теоретически, t-критерий может применяться, даже если размеры выборок очень небольшие (например, 10; некоторые исследователи утверждают, что можно исследовать выборки меньшего размера), и если переменные нормально распределены (внутри групп), а дисперсии наблюдений в группах не слишком различны (см. также Элементарные понятия статистики). Предположение о нормальности можно проверить, исследуя распределение (например, визуально с помощью гистограммы) или применяя какой-либо критерий нормальности. Равенство дисперсий в двух группах можно проверить с помощью F критерия или использовать более устойчивый критерий Левена. Если условия применимости t-критерия не выполнены, следует использовать непараметрические альтернативы t-критерия (см. Непараметрическая статистика и подгонка распределения).

p-уровень значимости t-критерия равен вероятности ошибочно отвергнуть гипотезу о равенстве средних двух выборок, когда в действительности эта гипотеза имеет место. Иными словами, он равен вероятности ошибки принять гипотезу о неравенстве средних, когда в действительности средние равны. Некоторые исследователи предлагают, в случае, когда рассматриваются отличия только в одном направлении (например, рассматривается альтернатива: среднее в первой группе больше (меньше), чем среднее во второй), использовать одностороннее t-распределение и делить р-уровень двустороннего t-критерия пополам. Другие предлагают всегда работать со стандартным двусторонним t-критерием.

См. также, t распределение Стьюдента.




Начало  Назад  Вперед



Книжный магазин