Компьютерная математика Maple

         

Визуализация дифференциальных параметров кривых

Дифференциальные параметры функции f(x), описывающей некоторую кривую, имеют большое значение для анализа ее особых точек и областей существования. Так, точки с нулевой первой производной задают области, где кривая нарастает (первая производная положительна) или убывает (первая производная отрицательна) с ростом аргументах. Нули второй производной задают точки перегиба кривой.

Следующая графическая процедура служит для визуализации поведения кривой /, = /(.г) на отрезке изменениях от а до b:

Визуализация
дифференциальных параметров кривых

В этой процедуре заданы следующие цвета (их можно изменить): Таблица 12.1. Цвета при визуализации в процедуре shape_plot

Изменение /(х)

Цвет

Возрастание

Синий

Убывание

Красный

Площадь

Цвет

Над минимумом

Зеленый

Под максимумом

Коралловый

Например, для функции:

Визуализация
дифференциальных параметров кривых

построенный график будет иметь вид, представленный на рис. 12.43 (естественно, в книге цвета — лишь оттенки серого).

Рисунок 12.43 дает наглядное представление о поведении заданной функции. Рекомендуется опробовать данную процедуру на других функциях. Следует отметить, что, поскольку процедура использует функции ntiroimize и maximize, она может давать сбои при исследовании сложных функций, содержащих специальные математические функции или особенности. Иногда можно избежать такой ситуации, исключив особенность. Например, для анализа функции sin(x)/x можно записать ее в виде:

>f:=x->if x=0 then 1 else sin(x)/x  

end if; 

shape_plot(f(x),-10,10);

Исполнение приведенной выше строки ввода дает график, представленный на рис. 12.44.

Визуализация
дифференциальных параметров кривых

Рис. 12.43. Визуализация поведения функции f(х)

Визуализация
дифференциальных параметров кривых

Рис. 12.44. Визуализация поведения функции sin(x)/x

Данная процедура дает хорошие результаты при анализе функций, представленных полиномами. Вы можете сами убедиться в этом.

Содержание раздела