Ниже мы рассмотрим типичный анализ достаточно «сложной» функции, имеющей в интересующем нас интервале изменения аргумента х от -4 до 4, нули, максимумы и минимумы. Определение функции f(x), ее графики и график производной dF(x)/dx даны на рис. 9.2. Этот рисунок является началом полного документа, описываемого далее, i
Функция F(x) на первый взгляд имеет не совсем обычное поведение вблизи начала координат (точки с х =у = 0). Для выяснения такого поведения разумно построить график функции при малых х и у. Он также представлен на рис. 9.2 (нижний график) и наглядно показывает, что экстремум вблизи точки (0, 0) является обычным минимумом, немного смещенным вниз и влево от начала координат. Теперь перейдем к анализу функции F(x). Для поиска нулей функции (точек пересечения оси х) удобно использовать функцию f sol ve, поскольку она позволяет задавать область изменениях, внутри которой находится корень. Как видно из приведенных ниже примеров, анализ корней F(x) не вызвал никаких трудностей, и все корни были уточнены сразу: Поиск нулей функции
> fsolve(F(x),x,-2...-l):
-1.462069476 > fso1ve(F(x),x,-.01..0.01);
0.
> fsolve(F(x).x.-.05..0);
-.02566109292
> fsolve(F(x),x,1..2);
1.710986355
> fsolve(F(x),x,2.5..3):
2.714104921
Нетрудно заметить, что функция имеет два очень близких (но различных) корня прих, близких к нулю.
Анализ функции на непрерывность, наличие ее нарушений и сингулярных точек реализуется следующим образом:
Анализ функции на непрерывность, наличие ее нарушений и наличие сингулярных точек
a
б
в
Рис. 9.2. Задание функции F(x) и построение графиков функции и ее производной
Этот анализ не выявляет у заданной функции каких-либо особенностей. Однако это не является поводом для благодушия — попытка найти экстремумы F(x) с помощью функции extrema и минимумы с помощью функции minimize завершаются полным крахом:
Неудачный поиск экстремумов и минимумов функции
>extrema(F(x).{},x, 's');s;
>minimize(F(x),x=-.l...l);
minimize (.05x + xe (-|x|) * sm(2x),x = -.1 .. 1)
>minimize(F(x),x=-2.5..:2);S
minimize (.05x + xe(-|x|) sin(2*),*'=-2.5 ..-2)
Приходится признать, что в данном случае система Maple 7 ведет себя далеко не самым лучшим образом. Чтобы довести анализ F(x) до конца, придется вспомнить, что у функции без особенностей максимумы и минимумы наблюдаются в точках, где производная меняет знак и проходит Через нулевое значение. Таким образом, мы можем найти минимумы и максимумы по критерию равенства производной нулю. В данном случае это приводит к успеху:
Поиск минимумов по критерию равенства нулю производной
> fso1ve(d1ff(F(x),x)=0,x,-.5...5);
-.01274428224
>xm:=%;
хт:= -.0003165288799
>[F(xm),F(xnn-.001),F(xm-.001)]:
[-.00001562612637, .00003510718293, -.00006236451216]
>fsolve(diff(F(x),x)-0.x,-2.5..-2);
-2.271212360 '
>fso1ve(diff(F(x),x)=0,x.2..2.5):
2.175344371
Неудачный поиск максимума
>maximize(F(x) ,x--l.. - .5);
maximize(.05х + хе (-|x|) * sin(2x),x = -l .. -.5)
Поиск максимумов по критерию равенства нулю производной
>fso1ve(diff(F(x).x),x,-l..-.5);
-.8094838517
>fso1ve(diff(F(x),x),x..5..2):
.8602002115
>fsolve(diff(F(x),x),x.-4..-3);
-3.629879137
>fsolve(diff(F(x),x).x,3..4);
3.899664536
Итак, все основные особые точки данной функции (нули, минимумы и максимумы) найдены, хотя и не без трудностей и не всегда с применением специально предназначенных для такого поиска функций. В уроке 12 будет описана процедура, которая автоматизирует процесс анализа не очень сложных функций и обеспечивает его наглядную визуализацию.