Математика и математический анализ в Maple

эльза порно      сколько стоит сделать ремонт +в квартире 1586 бесполезный блог|https://voyrforum.ru    Outlet voucher codes uk. | Лучшие криптобиржи по объемам торгов

Компьютерная математика Maple

Вряд ли эта мощная математическая система, разделяющая претензии на мировое лидерство с системами Mathematica фирмы Wolfram Research Inc., нужна секретарше или даже директору небольшой коммерческой фирмы. Но, несомненно, любая серьезная научная лаборатория или кафедра вуза должны располагать подобной системой, если они всерьез заинтересованы в автоматизации выполнения математических расчетов любой степени сложности. Несмотря на свою направленность на серьезные математические вычисления, системы класса Maple необходимы довольно широкой категории пользователей: студентам и преподавателям вузов, инженерам, аспирантам, научным работникам и даже учащимся математических классов общеобразовательных и специальных школ. Все они найдут в Maple многочисленные достойные возможности для применения.
По мнению автора, сравнение системы Maple 7 с лидером среди систем компьютерной математики — системой Mathematica 4.1 — непродуктивно. У каждой программы есть свои достоинства и недостатки. А главное — у них есть свои приверженцы, которых бесполезно убеждать, что иная система в чем-то лучше. Это все равно, что сравнивать великих исполнителей джазовой и рок-музыки Луи Амстронга и Би Би Кинга. Все, кто всерьез применяют системы компьютерной математики, должны работать с несколькими системами, ибо только это гарантирует высокий уровень надежности сложных вычислений.
И все же надо отметить, что интерфейс Maple 7 более интуитивно понятен, чем у строгой Mathematica 4.1. Maple 7 на первый взгляд имеет несколько менее мощную графику, но простота управления параметрами и легкость подготовки графических процедур часто позволяет визуализировать решения математических задач с меньшими усилиями, чем при использовании системы Mathematica 4.1. Обе системы в последних реализациях сделали качественный скачок в направлении эффективности решения задач в численном виде, в частности за счет повышения скорости выполнения матричных операций.
Особенно эффективно использование Maple при обучении математике. Высочайший «интеллект» этой системы символьной математики объединяется в ней с прекрасными средствами математического численного моделирования и просто потрясающими возможностями графической визуализации решений. Применение таких систем, как Maple, возможно при преподавании и самообразовании от самых основ до вершин математики.

Предисловие
Первое знакомство с системой Maple
Информационная поддержка Maple
Работа с файлами и документами
Управление интерфейсом пользователя

Типы данных системы Maple
Встроенные операторы и функции
Типовые средства программирования
Математический анализ
Анализ функций и полиномов

Символьные (аналитические) операции
Типовые средства построения графиков
Расширенные средства графики
Решение дифференциальных уравнений
Математические пакеты

Пакеты линейной алгебры и функциональных систем
Обзор пакетов специального назначения
Примеры решения научно-технических задач

Математический анализ в Maple 9

Основной структурной единицей в Maple является рабочий лист, а само окно программы внешне напоминает окна приложений Microsoft Windows: такая же панель меню со стандартным набором команд (часть из них специфична для Maple, но многие, особенно те, которые касаются редактирования документов, вполне знакомы пользователю системы Windows вообще и редактора Word в частности), панель инструментов с кнопками, дублирующими команды панели меню, контекстная панель, рабочая область, строка состояния.
Работа осуществляется в интерактивном режиме: пользователь вводит команду, нажимает <Enter>, после чего в том же рабочем листе под введенной командой отображается результат выполнения операции вычислительным ядром Maple. Сам рабочий лист разбивается на группы. В пределах одной группы выполняются сразу все команды — в порядке их следования в группе. Поэтому формально в Maple выполняется не команда, а группа команд (другое дело, что группа может состоять из одной команды). Что касается самих групп, то их выполнять можно в произвольном порядке, На первый взгляд может показаться, что такой подход создает искусственные трудности в работе. Однако это далеко не так. Грамотно составленный рабочий лист Maple напоминает музыкальный инструмент, в котором роль клавиш играют группы — "сыграть" на нем можно практически любую "мелодию". Это яркое проявление абсолютно новой философии, реализованной командой разработчиков университета Waterloo.
Maple — "аналитик" до мозга костей. Даже в тех случаях, когда вычисления носят численный характер, расчетные алгоритмы очень часто реализуются так, чтобы получить сначала аналитический результат (хотя данный режим может быть отключен — с этой целью предусмотрены специальные опции). Кстати, численные значения могут быть получены с практически любой нужной степенью точности, причем достаточно быстро.
В Maple на сегодня в общей сложности используется более трех тысяч команд, однако некоторые из них (наиболее важные) применяются достаточно часто и составляют костяк базового языка. Они, в основном, имеют отношение к проблемам интегрирования и дифференцирования функций, решения уравнений и т.п. Некоторые команды доступны только при подключении специальных пакетов.

Вступление
Графический интерфейс пользователя
Вычисление производных
Числовые и функциональные ряды

Интегрирование
Дифференциальные уравнения
Задачи физики
Численные методы

Математический анализ в Maple

Важным разделом математики является исследование аналитических функций. Оно обычно заключается в определении координат особых точек функции и ее значений в этих точках, а также в выяснении особенностей функции, таких как наличие точек разрыва, асимптот, точек перегибов, разрывов и т. д. К сожалению, пока нет средств, сразу выявляющих все особенности функций, поскольку даже средства, решающие частные задачи анализа функций, довольно сложны и специфичны. Достаточно отметить проблему поиска экстремумов функций (особенно функций нескольких переменных). Поэтому функции приходится анализировать индивидуально.
С помощью функции fsolve легко находятся значения независимой переменной х функций вида f(x), при которых f(x)=0 (корни этого уравнения). При этом данная функция позволяет (в отличие от функции solve) изолировать корни функции f(x) указанием примерного интервала их существования. Ряд функций служит для вычисления экстремумов, максимумов и минимумов функций, а также для определения их непрерывности. Одна из таких функций, extrema, позволяет найти экстремумы выражения ехрr (как максимумы, так и минимумы) при ограничениях constcs и переменных vans, по которым ищется экстремум: extrema(expr. constrs) extrema(expr, constrs, vars) extrematexpr, constrs, vans, V)
Ограничения contrs и переменные vars могут задаваться одиночными объектами или списками ряда ограничений и переменных. Найденные координаты точки экстремума присваиваются переменной 's'. При отсутствии ограничений в виде равенств или неравенств вместо них записывается пустой список {}. Эта функция в предшествующих версиях Maple находилась в стандартной библиотеке и вызывалась командой readlib(extrema). Но в Maple 7 ее можно использовать без предварительного объявления.

Вычисление сумм последовательностей
Анализ функций и полиномов
Основные операции с выражениями

Типовые средства построения графиков
Общая характеристика пакета plots
Основные средства решения дифференциальных уравнений

Самоучитель по Maple

Автор данной книги, как и многие почитатели компьютерных вычислений, прошел долгий путь их реализации: от программируемых микрокалькуляторов до работы на малых и персональных ЭВМ, использующих универсальные языки программирования высокого уровня. Это нашло отражение в его ранних книгах [1-3]. Совсем недавно пользователь ЭВМ, решая даже простые численные задачи, был вынужден осваивать основы программирования и готовить кустарные программы, вряд ли нужные кому-либо еще, кроме их создателя. Между тем возможности компьютеров постоянно росли. Сейчас персональный компьютер (ПК) с микропроцессором класса Pentium II, III или 4 намного превосходит по своим возможностям первые ЭВМ, занимавшие целые комнаты и залы. А скорость вычислений нынешних ПК в сотни раз превосходит скорость вычислений легендарных IBM PC XT и AT (первых ПК) и вплотную приближается к скорости вычислений суперЭВМ недавнего прошлого.

Предисловие
Назначение и место систем Maple
Меню Help
Операции с файлами
Меню View

Преобразования чисел с разным основанием
Виды операторов
Упрощенные функции пользователя
Основные формулы для вычисления сумм последовательностей
Поиск экстремумов функций

Работа с частями выражений
Введение в построение двумерных графиков
Контурные трехмерные графики
Основная функция dsolve
Назначение пакетов расширения и обращение к ним

Загрузка пакета расширения Matlab
Обзор средств пакета
Преобразование в код Фортрана или С
Заключение

Учебник по промышленной статистике

Электронный учебник по промышленной статистике помогает начинающим пользователям получить базовые знания по контролю качества, анализу процессов и планированию экспериментов на производстве. По многочисленным просьбам наших клиентов, в книгу включен раздел по основам внедрения ISO 9000. Материал учебника был подготовлен отделом распространения и технической поддержки компании StatSoft на основе многолетнего опыта решения производственных задач и чтения лекций пользователям STATISTICA. В пособии приводится большое количество примеров уже решенных задач с использованием методов промышленной статистики, а также отчеты, предоставленные нашими партнерами, которые успешно используют STATISTICA в своей производственной деятельности.

Элементарные понятия статистики
ISO 9000 Bases
Анализ соответствий

Множественная регрессия
Моделирование структурными уравнениями
Учебник по контролю качества

Ассемблер для DOS, Windows и Unix

Говорят, что программы на ассемблере трудно отлаживать. Программы на ассемблере легко отлаживать — опять же при условии, что вы знаете язык. Более того, знание ассемблера часто помогает отлаживать программы на других языках, потому что оно дает представление о том, как на самом деле функционирует компьютер и что происходит при выполнении команд языка высокого уровня.
Говорят, что современные компьютеры такие быстрые, что ассемблер больше не нужен. Каким бы быстрым ни был компьютер, пользователю всегда хочется большей скорости, иначе не наблюдалось бы постоянного спроса на еще более быстрые компьютеры. И самой быстрой программой на данном оборудовании всегда будет программа, написанная на ассемблере.

Введение
Что потребуется для работы с ассемблером
Процессоры Intel в реальном режиме
Директивы и операторы ассемблера

Основы программирования для MS-DOS
Более сложные приемы программирования
Блочные устройства
Программирование в защищенном режиме
Программирование для Windows 95 и Windows NT

Ассемблер и языки высокого уровня
Оптимизация
Процессоры Intel в защищенном режиме
Программирование на ассемблере в среде UNIX
Заключение
Символы ASCII